15ME52

Fifth Semester B.E. Degree Examination, July/August 2021 Dynamics of Machinery

Time: 3 hrs.
Max. Marks: 80

Note: Answer any FIVE full questions.

1 a. State the conditions for the equilibrium of the following systems :
i) Two force member
ii) Three force member
iii) Member with two forces and a torque
(06 Marks)
b. Determine the driving torque T_{2} on the crank of a slider crank mechanism shown in Fig Q1(b) for static equilibrium.

$\mathrm{OA}=100 \mathrm{~mm}$
$\mathrm{AB}=300 \mathrm{~mm}$

Fig Q1(b)
(10 Marks)
2 a. State and explain D'Alembert's principle.
(08 Marks)
b. When the crank is 45° from the inner dead centre on the down stroke, the effective steam pressure on the Piston of a vertical steam engine is 2.5 bars. The diameter of the cylinder $=$ 0.75 m , Stroke of the piston $=0.50 \mathrm{~m}$ and length of the connecting rod $=1 \mathrm{~m}$. Determine the torque on the crank shaft, if the engine runs at 350 rpm and the mass of the reciprocating parts is 200 kg .
(08 Marks)
3 a. Explain briefly Static and Dynamic balancing.
(04 Marks)
b. A shaft carries four masses A, B, C and D of magnitude $200 \mathrm{~kg}, 300 \mathrm{~kg}, 400 \mathrm{~kg}$ and 200 kg respectively and revolving at radii $80 \mathrm{~mm}, 70 \mathrm{~mm}, 60 \mathrm{~mm}$ and 80 mm respectively. The distances from the plane A are $300 \mathrm{~mm}, 400 \mathrm{~mm}$ and 700 mm . The angles between the cranks measured anticlockwise are A to B 45°, B to $\mathrm{C} 70^{\circ}$ and C to D 120°. The balancing masses are to be placed in planes X and Y . the distances between the planes A and X is 100 mm , between X and Y is 400 mm and between Y and D is 200 mm . If the balancing masses revolve at a radius of 100 mm , find their magnitudes and angular positions. ($\mathbf{1 2}$ Marks)

4 a. With usual notations, explain the primary and secondary unbalanced forces of reciprocating masses.
(04 Marks)
b. A four crank engine has two outer cranks set at 120° to each other and their reciprocating masses are each 400 kg . The distance between planes of rotation of adjacent cranks are $450 \mathrm{~mm}, 750 \mathrm{~mm}$ and 600 mm . If the engine is to be in complete primary balance, find the reciprocating mass and the relative angular position for each of the inner cranks. If the length of each crank is 300 mm , the length of each connecting rod is 1.2 m and the speed of rotation is 240 rpm , find the maximum secondary unbalanced force.
(12 Marks)

15ME52
5 a. Derive an expression for the Gyroscopic couple C = I. $\omega . \omega_{p}$.
(06 Marks)
b. In a spring loaded Hartnell governor the extreme radii of rotation of the balls are 80 mm and 120 mm . The balls arm and sleeve arm of the bell crank lever are equal in length. The mass of each ball is 2 kg . If the speeds at the two extreme positions are 400 rpm and 420 rpm . Find:
i) Spring stiffness
ii) Initial compression of the central spring
iii) Sleeve lift.
(10 Marks)

6 a. Define :
i) Sensitiveness
ii) Stable Governor
iii) Governor power
(06 Marks)
b. The rotor of the turbine of a ship has a mass of 5000 kg and rotates at a speed of 2100 rpm clockwise when viewed from stern. The rotor has a radius of gyration 0.5 m . Determine the gyroscopic couple and its effect when,
i) The ship steers to the left in a curve of 60 m radius at a speed of 16 knots (1 knot $=1860 \mathrm{~m} / \mathrm{hr}$)
ii) The ship pitches 6° above and 6° below the horizontal position and the bow is descending with its maximum velocity. The pitching motion is simple harmonic with a periodic time of 20 seconds
iii) The ship rolls and at that instant the angular velocity is $0.03 \mathrm{rad} / \mathrm{sec}$ clockwise when viewed from the stern.
(10 Marks)

7 a. Define the following terms :
i) Natural frequency
ii) Degrees of freedom
iii) Resonance
iv) Free and forced vibrations
v) Damped and undamped vibrations
(10 Marks)
b. Add the following motions analytically
$\mathrm{x}_{1}=3 \operatorname{Sin}\left(\mathrm{wt}+30^{\circ}\right), \mathrm{x}_{2}=4 \operatorname{Cos}\left(\mathrm{wt}+10^{\circ}\right)$
(06 Marks)
8 a. Derive the differential equation of a spring mass system using Newton's and Energy method.
(08 Marks)
b. Two masses m_{1} and m_{2} are connected to the rod as shown in Fig Q8(b). Determine the natural frequency of the system.

Fig Q8(b)
(08 Marks)

9 a. Define logarithmic decrement. Show that logarithmic decrement δ is given by $\frac{2 \pi \xi}{\sqrt{1-\xi^{2}}}$ for underdamped system.
(06 Marks)
b. A spring mass damper system has $\mathrm{m}=3 \mathrm{~kg}, \mathrm{k}=100 \mathrm{~N} / \mathrm{m}, \mathrm{c}=3 \mathrm{~N}-\mathrm{sec} / \mathrm{m}$. Determine :
i) Damping factor
ii) Natural frequency of damped vibration
iii) Logarithmic decrement
iv) The ratio of two successive amplitudes
v) Number of cycles after which the original amplitude is below 20%
(10 Marks)

10 a. Show that providing damping in vibration isolation is not useful when the frequency ratio is more than $\sqrt{2}$ or 1.44 .
(06 Marks)
b. A machine of total mass 17 kg is mounted on springs having stiffness $\mathrm{K}=11 \times 10^{5} \mathrm{~N} / \mathrm{m}$. A Piston within the machine has a mass of 2 kg has a reciprocating motion with stroke 7.5 cm and speed $6,000 \mathrm{rpm}$. Assuming the motion to be S.H.M. Determine :
i) Maximum amplitude of vibration
ii) Transmissibility
iii) Force transmitted to the ground or foundation.

Take $\xi=0.2$.
(10 Marks)

